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Numerous investigations have shown that majority of real fluids cannot be described in 
terms of a constant viscosity (Newtonian) model, There exist various effects connected 

with elastic properties of these fluids, with the dependence of parameters on shear velo- 
city etc. 

It is these phenomena, inherently related to the nonnewtonian behavior of melts and 

solutions of polymers, that cause irregularities in their flow patterns and give rise to so 

called “elastic turbulence” [l ta 31, 

All the flow irregularities exhibit a common characteristic feature, namely they appear 

at very small Reynolds numbers (they are very high viscosity fluids), when the usual hydro- 
dynamic instability and turbulence cannot take place. 

Assumption of the “elastic” character of this phenomenon is well supported by experi- 

mental data available, and several authors f4 to 61 use the critical value of a dimension- 

less parameter l? = 81/L-1 = +-W’i, characterizing reversible elastic deformation af 

fluid. as the criterion of its appearance. Here ?-i is the viscosity, G is the shear modulus, 
8 = 7 (=_I is the time of relaxation while I/ and L are characteristic velocity and linear 

dimension, respectively. 
When the accumulated elastic deformation exceeds some critical value (of the order 

of 7). then the phenomenon described above takes place, and we can use this as a basis 
for another assumption. Just as the inertial forces in a viscous fluid, the elastic fWXs 
act, in vlscoelastic fluids as an additional destabilizing factor (the connection between 

the elastic terms and additional nonllneari~ in equations will be seen later on the model 
used). This in turn, leads to tionslderarion of the possibilty of a special “elastic” 
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turbulence in viscoelastic fluids. 

Following the example of [7] dealing with viscous fluids. we can consider the above 

problem together with that of hydrodynamic stability of the flow of viscoelastic ffuid. 
Several authors [8 to 12-J have, in recent times, investigated the stability of simple 

flows of viscoelastic fluids, but only these stability changes were considered which were 

brought about by the action of elasticity when the fluid underwent small deviation from 

its Newtonian behavior. i e, for small values of the elastic parameter r and only for 
these flows, which have already exhibited instability in case of a viscous fluid, 

Unlike the previous papers on the stability of flows of Triscoefastic fluids, this paper 

considers the linear instability of a plane-parallel Couette flow (which is, according to 

fl J, linearly stable in a viscous fluid) at small Reynolds numbers and large values of 
parameter r (compare the phenomenon described above and investigated experimen- 
tslly) i, e. under the conditions allowing the destabilizing influence of elasticity to 

manifest itself. 

We shall in addition note, that in majority of papers investigating the influence of 
small amount of elasticity (low r) on the instability at large Reynolds numbers, destabi- 
lization had, in fact, occurred e 

1, Equrtfon of smril plinc perturbrtionr. Let us consider a simple 

model of viscoelastic fluid, called Maxwell’s model. It has two constants (viscosity and 

the time of relaxation) and describes the phenomenon of relaxation of stresses in a 

medium, Generalization of Maxwell’s model to the case of high rates of deformation 

is found not to be single-valued [13] and we shall limit ourselves to a particular case 

(see EQ. (1.2) ) assuming, that this equation already contains these basic features which 
interest us l 

Since the aim of this paper is to prove the instability of a plane-parallel Couette flow. 
therefore in the following we shall limit ourselves to the case of plane perturbations, 

disregarding the three-dimensional ones, although they are of undoubted interest when 

the critical value r, (as A * 0) is being determined, since for fluids with normal stresses 

Squire’s theorem on the major role of plane perturbations does, apparently, not hold (see 

P-4). 
So, we shall consider a plane shearing flow between two plane parallel plates, one of 

which is fixed, while the other moves with a given velocity v. We shall denote the dis- 
tance between plates by z and in the following we shall employ the rectangular coordi- 

nate system with two axes lying in the fixed plane, X2-axis perpendicular to it and ~1 
coinciding with the direction of flow. 

Equations of motion and continuity of incompressible fluid are 

Here and in the following, kinematic pressure JY, viscosity v and stress tensor ai, are 
used and they were obtained by dividing the proper values by constant density. 

We shall employ Maxwell’s model with a single value of the stress relaxation time, 
extended to the case of large deformations by Oldroyd 1131, as a model of viscoefastic 
fluid. Its rheological equations will be 

and the combined solution of (1,1> and (1.2) in case of a stead; pian= sh&ing flow 
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with usual no-slip conditions yields the following expressions for the velocity vector and 
the stresses 

v = (IX-‘zs, O), (I 2) 

Let us superimpose on this steady solution, small plane perturbations, which are expo- 
nential functions of time and the coordinate xl , 

Neglecting the terms nonlinear in perturbations, we can easily reduce the obtained 
system to a single fourth order equation, 

Selecting the length L and velocity I/ as characteristic magnitudes (dimension of 
mass was eliminated by dividing everything by density), we can obtain that equation in 

dimensionless form 

f&D2 - 2Y*D + 2 - aay2,1 [D2 + 2ia rD - czs - 2aT2 ] u + 

+ aTRy3* (y - c) ID2 - c?]u = 0 (M 

where v(y) exp [ia (z - et) 1 is the (El= L-l&+component (proportional to the 

stream function) of perturbation velocity, 

x = L--1x1, D = d / dy, y, = y - c - id’I+’ 

and finally R = VL v-l and r = @T/L-l are the Reynolds number and a dimension- 

less “elasticity parameter”, the latter indicating the amount of accumulated elastic 

deformation in the shearing flow. 
It should be noted that the linearized stability problem can be solved as an initial 

value problem, using Laplace transforms with respect to time and Fourier transforms along 
the longitudinal coordinate, 

Moreover it can be shown, that such a formulation of a problem is, as in the case of 

viscous fluid [7], equivalent to the analysis of instability in terms of elementary wave 
solutions, New solutions of an eigenvalue problem emerging here corresponding to the 

continuous spectrum, decay with time. 
We shall mention an interesting circumstance influencing our choice of model equa- 

tions of state of viscoelastic kid. Out of all possible generalizations of Maxwell’s 
model to the case of high rates of deformation, we have chosen the equations of a “con- 

travariant” model (1.2). 
Equations of a “covariant” model 

present another possible generalization l 

For a steady Couette flow, the stress tensor differs from (1.3) and has the form 

nevertheless equations of plane perturbations are exactly the same as in case of a con- 
travariant model, i. e. Eqs. (1, 4). 

The latter should be solved under the usual boundary no-slip conditions 

u (0) = Dv (0) = v (1) = Dv (1) = 0 (M 

Since (1.4) with (1, 5) cannot be solved in its explicit form, we shall consider several 
asymptotic solutions of this equation. In the following we shall only consider the case 

3 << 1 which is of practical interest, and which corresponds to the case of flow of elastic 
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fluids of high viscosity. We shall also assume that the elasticity parameter I‘ is not 
small (I’ 2 1). As we know, in such problems we must determine the connection 
between the parameter c , taken a~ an efgenvalue of the problem (1.4) and fl. 5) and 
other parameters of the problem which are: wave number CJ , Reynolds number 8 and 
the elastic parameter r . We shall therefore consider several cases, making various 
assumptions about the quantity 1 c 1 . 

2, Linear atability of a plrns,lnertirle~~ Couettr flow of Max- 
w e Xl i 8 n f 1 u id, Let I c I< 1. Taking the previous assumpdon that 3? s 1 into 
account, we easily see that in this case we can neglect, in (1.4). terms containing Rey- 
nolds number 8 . Eq, (1.4) will then become 

(Y,“o* - 2Y*D “6 2 - dY*y (02 + 2iarl.l - CP - 2uTp = 0 
Basic system of solutims of this equation is 

2tl = (y - c)eafl, 0s = (y - C) e-=g 

3s = exp [oz (- i + f1 + r-3) y], 
I_- 

V4 = exp [- ur (i + vi -j-P) y] 

Fulfilling the conditions (1.5) is equivalent to equating 10 zero the characterWe 
determinant (j3 = (1 + P)l/*) 

-u^ -c 1 f 1 

1-W li-@J aC (&- i) --c&r(i)+i) 

(I --e)P (I- c) e-= @B-2) ,4x&r) 5 0 

Ii+ a(1 - c)] ca [1 -u(i - c)] P ar(P-i) ear+‘) -ar(p + f)edrie+*j 

which on expansion, yields an equation quadratic in c , whose solutfon is 

It is easy to confirm that the numerator of A in (2,l) fs positive and becomes equal 
to zero only when ~3 = ci or r = 0 ; denominator of P? is a negative and becomes equal 
tozeroalsowhena= 0 orwhenr= 0,henceA CO, 

Then, it follows from (2.1) rhat the condition of instability Imc 2 0 is realized only 
when gr -& The latter will be true, if the function 

c9 (a+ 2) = 22drrhu-h2 + UZ &aahULcorbZ -f coSj@-=-i$> - 
-zs~alc-2kie&z(shhu+aoahu), 2 = a (1 + my* (2.2) 

becomes equal to zero. 
Definition of z infers that @ is defined in the region {a 2 0, zra) (here and in 

the following, as we can easily show, it is sufficient to consider the values c2 2 0 only). 
Differentiation of @[a, a), with respect to 2 e yields 
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+ &,,h a corhZ (‘_““z -?!!% / 
2 a : 

(2.3) 

Since the function 2 
-1 

tanh 2’ is monotonously decreasing when Z > 0, then the assump- 
tion that Z >a implies that the second term in (2. 3) is negative. Taking into account 

an additional fact that the first term of (2. 3) is negative, we conclude that @,‘< 0 for 
fixed a > 0. Since it follows from (2. ‘2) that when z = a 

6, 1 T=Q = 2 (a” - sid a) < 0 

then @(a, 2) < 0 in the region c a > 0, Z ?a ] and this imples that Imc c 0 when 

a > 0, i. e. solution of the problem is stable in the inertialess approximation. 

3, Perturbrtionr in presence of high frequency orcillrtions. We 
shall now consider the case when J c 1 >> 1 . Then, as we can easily see from (1.4), both 
terms in this equation will be of the same order, if 

&arc - 1, F, ‘= jj’ ‘ZJy:‘? 4 1 (3.1) 
Now, IC ! * 1 implies that C$ QC 6-l. We shall seek the eigenvalue C and solution 

U in the form of a series used in the perturbation theory 

c = E-IS, S = S,, + ES1 + . . . , I; = 2’(, $ &vl f . . . (3.2) 
Expansion of the coefficients in (1.4) into series in 6, yields 

Lou0 s (_P - cc) [IF + 2iarLI + id? (s?, - 2 - I?)1 2’0 = 0 (3.3) 

~~~~~ = [~(i/~) D (02 + 2idD - a2 - 29F) + ars (1 + 2dy) (Da - a2)]vo 

which can be solved with initial conditions (1.5). In the expression for U1 we have for 

convenience retained the parameter S = So + ES1 + . . . with the understanding that this 

expansion will be included in the characteristic determinant during the final stage of 

computations l 

Let us inspect the solution of our problem in the zero approximation. Basic set of 
solutions has, in this case, the form 

@U 
, 

e-U!/ 
, 

eiCrr(Y-l)!! 
I 

@xr(v+L)?! 
t r = (%12-- 1 - r-z)'/') (3.4) 

Equating to zero the characteristic determinant of the system, we obtain 

1 1 1 1 

a 
A, = --a_a iar (T-- 1) - iar (7 + 1) 

( 
e’ e eiar(Y-l) ,-iccr(u+l) / = 0 (3.5) 

sea - aemu iar (-( _ I) eim’-l) _ iar CT + 1) e-iaIYY+li j 

which, on expansion, yields the dispersion relation 

11 + r2 (1 - ~2) I sin ary siab CI - 2ry (COS 8rr coah a - cosd) = 0 (3-Q 
possessing no solutions on the imaginary axis y . All its solutions except for five trivial 

ones “( - 0, r = _C 14 s-1 (3.7) 
expressing the linear dependence between the solutions (3. 4), lie on the real axis, spaced 
at the intervals approximately equal to T’f(excert four of such intervals). Applying 
Rouche’s theorem on rootE of analytic functions to (3.6) we see. that the roots listed 
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above account for all the roots yk of (3.6). Thus, apart from the trivial ones, all the 

roots Yk are real, the corresponding eigenvalues SOk are purely real, and to obtain the 

solution of our problem we must investigate the following approximation of the pertur- 

bation theory. 
As we mentioned before. linearly dependent solutions of the first equation of (3.3) 

correspond to the roots of (3.7). It can be shown, by constructing in the usual manner 

linearly independent equations corresponding to these roots, that the characteristic deter- 
minant cannot, in this case, become equal to zero, i. e, numbers (3.7) will not be the 

eigenvalues of the problem. 

Consider now the solution of our problem in the first approximation. Eqs. (3.3) easily 
yield the basic set of solutions, which is 

v1 = efy (1 + uzy), z’s _ = e-w (1 + &iq) 

vg = eicrr(y-l)~[l + E (bLy + ey2)] 

v4 = e-ia~(Y-5l)l([l + 8 (b-y _+ ~2)] 

a2 r-1-i 

s s2 -+ 2il?-1 - 2 ’ 
Cir.9 

e= -i__- 
3 

where a’ and e’ are the complex conjugate of CJ and e. 

If the boundary conditions (1.5) are fulfilled, then the characteristic determinant 

becomes equal to zero 
j VI0 vzo %O v40 I 

A = “O’ v;’ vso’ 
II 

Vll V!il 
1; / = 0 (3.9) 

\ Vll U21' RI1 v41' 

Usual system of indices is adopted here, first subscript in LJi k corresponding to the 
consecutive number of solution, the second one to the value of v = 0,l . A prime denotes 

a derivative with respect to I/. 

The following computation scheme is adopted. Inserting (3. 8) into (3. 9) and expand- 
ing the determinant into a series in 8 , we obtain 

A (a, r, s, 4 = &, (a, r, s) + EL& (a, I’, s) + . . . (MO) 

Let us recall that, by (3.2). S = So + ES1 + . . . . Then, expansion of s in ( 3. lo) 

yields 

A (a, r, 4 4 = A0 (a, rV SJ + E {GWAO (a, r, S> Iso f A~ (a, r, so)j + 0 (+4 
Putting A0 (a, I’, so) = 0, we obtain 

% = - A1 (a, r, s*) 1qlas A0 (a, r, so)]-1 (3.11) 

Expanding (3.10) into a series in c we easily see that the form of A, (a,. r, s,,), 
suitable for computation, is 



316 V. A. Gorodtsov and A. I. Leonov 

1 1 1 1 

ml m2 ms 
A0 (mk) = em, 

1% 

em* ema em4 

mIeml mzemz maema m4em4 

= (m4 - m8) (mi - ml) (em,+* $ emdtms) f (ms - ml) (mp - ma) (eml+m* + 

-4-e ms+m4) + (ma - m.J (ma - ml) (eml+mr + em~fm~) 

ml0 = a. rn2’ = - a, rns” = iaF (7 - I), me0 = - iar (r + 1) 

After a lengthy calculation following the scheme based on (3. ll), we obtain the 

required connection .between Imsl and the parameters a and r of the problem, as a 
pair of transcendental Eqs. 2al?ImsE+1 = 

F = (1 + J? - Pr2) rinh u sin al?7 - 2 Py (hha cos aI?y - cos al?) = 0 

Let us examine the basic properties of these Eqs. Dividing the second Eq, of (3..12) 
by u%+a sin aI’y (sin aI’y # 0, apart from a trivial case of y = 0) and putting 
&‘y = z,, we obtain . 

aa (1 + IF) - z2=2azatha wt z- ( COST 
cosha sin 2 ) 

(3.13) 

Since for 2 = 0 we have 
cos ar a2(l +l?)>2aMth+t -=j 

we easily see that the first root of (3.13) Z1 <lT. When zs<a2 (‘I + r*) (z> n) 

the toots zk (c$ r) of Eq, (3.13) are spaced at the intervals approximately equal to i?. 
Analogous’ situation arises when z2$ u2 (1 + r2), and zk* krr as k-m . Accord- 

ing to the Rouche’s theorem mentioned before, if krc < z < (k f 1) n and 

z* > u’ (1 + ry, th en there are (k- 2) roots of this Eq, on the interval [O, Z]. 
Two roots are lost in the vicinity of a point z = a (1 3_ r2)l/g, (they are included 
amongst the trivial roots (3.7) ) . Applying again the Rouche’s theorem we can easily 
show that 

r a LaZ F ‘“.P aP r’l,=~r., = &,.,, > O sm 2 

in which F is given by the second expression of (3.12). 

We can show however by direct calculation that the denominator of the right-hand 
side of the first Ee. of (3.12) differs from F”, (a, r, y) (sinar?;)” by a positive mul- 
tiplier only, therefore it is also positive. From this it follows directly that Imsl < 0 on 
the lines ar = kn, i. e. on these lines we have stability. By meaflS of more cumbersome 
calculations it might be shown that we also have stability on the lines CZr = k’?l/Z, This 
supports an assumption, not fully proved, that the problem is stable in the considered 

approximation, 
Thus we have shown that the solution of our problem is stable on the plane J? f -f=, I? 

of the parametric space R’r’j * a, r. This apparently occurs also on the plane 
R *Jar- lr = e < 1 of the region are e-l , In the next Section we shall consider 

such an asymptotic expansion, which will allow us to investigate the region Of large 

values of aI? (d - 8-l). 
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; &E#f of the lnrtrbillty, Assuming. as before, that the parameter 
is small, we shall consider the region of variation of the remaining parame- 

ters a, r and C , the region connected with the size of C in the following manner 

ar H I? - E-l> Yl. 

Since the terms of (1.4) containingR disappear when Ic[ 6 1 and the equation 

reduces to the stable case already considered, we assume that 1 C 1 s 1 and C = cwl.S, 

where s == s, + es1 + . . . 

Then, expanding the coefficients of (1.4) and neglecting the infinitesimals of the order 

higher than second, we obtain 

D‘v + 2tal?fPv $ a* (--2-t2P + r2s2 - 2el5s)Pv - 

- 2uT (ia $ e $) Dv - a‘ (Iv - 2P - 1 - 2ePys) v = 0 (4.1) 

If only the biggest terms were retained, then the equation would become the first Eq. 

of (3.3), already considered. 
By the previous argument, all the roots Yk = ~s,k*--~ - ra lie on the real aXiS 

and, apart from two roots, have an approximate separation of 51 (UT)-‘. 

Therefore, the imaginary part of S shou&l be sought in the next approximation and 
we can investigate the following particular case (with a suitable choice of parameter 

CJr, when y coincides with one of the roots ylc) 

$2 z 2 (1 + e z + .**I 

Then, with the previous accuracy, Eq. (4.1) becomes 

D% + 2 idD% - 2a2 (1 rf d?y @ - EI’~%) D2v - 2a2r (ia & d’v 27, Dv -I- 

f U’ (1 f 2)4Ef2?j - 2d?g) 2, = 0 (4.2) 
Since the latter has nonanalytic solutions (in terms of the parameter E: a 1). we shall 

seek them in the form 
v=eXp &My S 

Further, inserting for g the expansion 

g = u2g_2 + ag_, + go + aWfgl + f2g2 + . . . 

we shall obtain, within the previous accuracy (up to the order of C ), the following solu- 

tions : 

01 = exp -2~aryt-~~(1~Er2~y--‘2er2~)~1(~fO(~)) 

d v2 = exp fayl (1 + 0 (l/a)) 

va = exp I- ayl (1 + 0 (I/U)) (4.3) 

(~*d?)/%--22er~~)y](i ++-+ 0 (f)) 

Constructing from these solutions a characteristic determinant (3. 9) and equating it 
to zero, we obtain 
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where 

c==~S1~Z~l + ‘/ze~~~e-“k12~‘~~1/Z~+O(e) 

we shall have 
Imc=“--IfZ~ 

4 i= 

9r v”z, 
_..L =FZT (4.6) 

Separating (4 4) into real and imaginary parts, we obtain a system of transcendental 

equations, easily reducible to 

tUBI& = 
f aI% / i/Z - (qi - arjturhr), 

% - cQ=W, 

t&2?& = 2 
arl, & “9 (rli - ar) I r/’ 

WI 

@ + Qrz + f/,U%%~ + (Qi - Cd?)’ 

From the second Eq. of (4 7) ve can infer, in accord with the previous assumption that 

{qi - ccr) - 2 and ear - 1, this equation can be written in a simple form 
2cz$. 

tsnb2?“&zz--- 
-2ri,fS 

d + ?$.2 ’ 
Or “=l,-,,2rl 

by the previous assumption CJ >* 1 , therefore q P RKJ. First 6, of (4.7) yields the 

following expression for rlf 

tna qi z (2a)-le2a t f aI?e / 1/2 - (qi - ar)prtBal 

and we easily see that its roots are (ql: - ar) - 1. From (4.6) we have 

Imc~_c--L- 
2 )/2re 

(4.8) 

and from it we see that in the parametric space under consideration, increasing perturba- 

tions exist, with an amplitude proportional to 
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Thus we have shown that in the parameteric ( a, r, R’.‘pr--li)p ) space (on the plane 
R’:zr-‘,‘~ = E < 1 in the region Ur - E-l, a - r) instability occurs, with suffici- 

ently large index of growth of perturbations. Question of boundaries of the region of 

instability and of the critical values of parameters r and R characterizing the onset of 

instability, remains open. 
Our results show that unlike the case of viscous fluid for which plane-parallel Coueue 

flow apparently exhibits linear stability, in case of our model of viscoelastic fluid such 
a flow is found unstable. This instability caused by the elasticity of fluid differs basi- 

cally from the usual instability of a viscous fluid by the fact, that it occurs at quite small 

Reynolds numbers and high wave numbers. 
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